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About me

- ML Engineer @ Moloco (22.09 – now)
- Majored Physics & CSE @ SNU (17.03 – 22.08)
- Deepest (Season 5 – 9, 12 – now)

- Research Intern @ MARG & Supertone (21.10 – 22.07)
- Symbiote (21.03 – 07)
- AI Scientist @ maum.ai MINDs Lab (18.06 – 21.02)

2



3



Let’s think about confidence of model prediction

강수확률 p=30%? “argmax(1-0.3, 0.3) = 0 이니까 비 안 오겠지…”

그런데, 정말 확률이 30%일까?
비슷하게 예보됐던 날 100개를 모아보면, 정말 100일 중 30일에 비가 왔을까?
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We mostly use only confidence.argmax()

Only the ordering of the scores contributes to the final prediction & evaluation
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But, truthful confidence also matters

- Cost-sensitive classification
- Moloco: uses expectation(E) value to form optimal bidding price for ad auction

- Insurance company: also uses E.

- Any situation where uncertainty matters – to be cautious when p < threshold
- Healthcare: to reject low-quality/OOD inputs.

- ChatGPT: when to say “Sorry, as an AI language model, I can’t …”

- Self-driving cars

- …
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Defining “calibration”
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How to evaluate Confidence
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Defining “calibration”

Calibration Error = |Confidence – Frequency|

Example)

Suppose that we have 100 samples with precipitation p=30%

● actual frequency = 30%: model had perfect calibration
● actual frequency < 30%: model was over-confident
● actual frequency > 30%: model was under-confident
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Reliability diagram & ECE

● Bin(group) the data by model output (confidence) interval
● For each bin: compute “actual frequency” & compare with ideal value

Popular option: ECE (Expected Calibration Error). // 사실 정의하기 나름…

Quiz: Upper bound of ECE? / what if M=1?

Today’s most important slide
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● ECE can’t be evaluated on each data; must be binned.

● If multi-class (K>2), we may calculate ECE for each category

● Properties
○ Perfect calibration does not imply accurate prediction

○ 0 ≤ ECE ≤ 1

○ What if M=1? When would we want to do that?

Reliability diagram & ECE
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Modern NNs are 
overconfident
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OMG…

(ICML 2017)
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Um… okay.
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What causes miscalibration?

Turns out, the modern NN techniques have been harming calibration
(this paper is empirical; so there’s no deep analysis here)
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How can we fix it?

Post-hoc calibration / Model regularization
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Temperature scaling: A post-hoc calibration

Divide all logits (values before softmax) by constant T (>0).

● With T>1, we can ‘flatten’ some overconfident predictions
● How to find optimal T? → optimize NLL on validation set!

Note.

● The ‘temperature’ here is identical to 
that of knowledge distillation.

● TS does not change ordering;
thus, accuracy remains unchanged.
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Label Smoothing

“Resolving mis-calibration” = “Handling overconfidence” = “Label smoothing”

(NeurIPS 2019)

Label sm
oothing α=0.05

No Temp Scaling, No Label Smoothing

(ResNet-56, CIFAR-100)
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Label Smoothing

Caveat: Mixed use of T.S. & L.S. damages both ECE & ‘accuracy’.

w/o Label Smoothing w/ Label Smoothing
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Focal Loss

(Yes, it’s a concept derived from RetinaNet for Dense Object Detection!)

“Focus on learning hard samples” = “Prevent overconfidence”

● With CE, loss is non-trivial even when p>0.5 
○ Even after achieving 100% accuracy, optimizer can still

reduce loss by making model overconfident.
○ Let’s assign smaller loss on easy samples.

(NeurIPS 2020)

Quiz: CE(0.9), FL(0.9) = ? (no calculators!)
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Label Smoothing & Focal Loss – with equations

L.S. = encourage larger sum(log p) of confidence output

F.L. = encourage larger entropy of confidence output

Both values are minimal when p=U since -log(p), -plog(p) is convex downward.
→ prevent overconfidence.
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(U: uniform distribution)

(proof: Appendix B)



Inverse Focal Loss

Is overconfidence really an issue?

Regularizing model to produce less-confident results
might result in mixing up easy/hard samples.
→ Less distinguishable, worse ECE after T.S.

“From Calibrated to Calibratable”
Let’s amplify the overconfidence (higher loss on easy)
so that easy/hard samples are more distinguishable.
→ Better ECE after T.S.

(NeurIPS 2021)

Disclaimer: I should mention that the inverse focal 
loss itself is NOT this work’s main contribution.
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Inverse Focal Loss – more distinguishable samples

Def. learned epoch: at what epoch does the sample get correctly classified?

← easy hard →

Label Smoothing (other regularization) Focal Loss
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Inverse Focal Loss – Better ECE after T.S.
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Wrapping up
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Takeaways

● Modern NNs are widely miscalibrated & overconfident.
○ Higher accuracy does not lead to good calibration

● Calibration can be quantified with ECE & visualized with Reliability diagram

● To resolve miscalibration:
○ Temperature scaling as a post-hoc calibration

○ Model regularizations (label smoothing, focal loss) to prevent overconfidence

● But, model regularization can hurt ability to distinguish easy/hard samples.
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