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Introduction

How should we feed audio to neural network?

I Raw audio ∈ [−1, 1]T

I Mel-spectrogram, MFCC
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Introduction – STFT & Mel-spectrogram

I Hamming window: w [n] = 0.54− 0.46 cos (2πn/L)

I window 25 ms, stride(hop) 10 ms

Image by Robert X. Gao, at https://bit.ly/2Ikbiga
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Introduction – STFT & Mel-spectrogram
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Introduction – STFT & Mel-spectrogram

raw audio
STFT

(linear-scale) spectrogram

magnitude

angle
Inverse STFT

mel filterbank

log
mel-spec.

WaveNet, WaveGlow
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Speaker Verification: d-vector
Overview

I Utterance
STFT−−−→ mel-spec.

LSTM+proj .−−−−−−−→ embedding ∈ R256

I Text independent, Zero-shot

from ‘Generalized End-to-End Loss for Speaker Verification’ by L. Wan et al.
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Speaker Verification: d-vector
Loss function

L(eji ) = −Sji ,j + log
N∑

k=1

exp(Sji ,k). (6)

where

c
(−i)
j =

1

M − 1

M∑
m=1
m 6=i

ejm, (8)

Sji ,k =

w · cos(eji , c
(−i)
j ) + b if k = j ;

w · cos(eji , ck) + b otherwise.
(9)
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Speaker Verification: d-vector

I Create random-sized batch: 70 – 90 frames

I Inference: window 80 / hop 40, average pooling

I 80 frame: 25 ms + 79 * 10 ms = 815 ms

1 def forward(self, x): # (B, T, num_mels)

2 x, _ = self.lstm(x) # (B, T, lstm_hidden)

3 x = x[:, -1, :] # (B, lstm_hidden)

4 x = self.proj(x) # (B, emb_dim)

5 x = x / torch.norm(x, p=2, dim=1, keepdim=True)

6 return x
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Speaker Verification: Data

Training data should be:

I large enough,

I contain speakers with various tones,

I utterances recorded from ‘the wild’

to prevent overfitting & discard any other info. than speaker’s

identity from the embedding.
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Speaker Verification

I Training data: VoxCeleb 2 (Multilingual, 5,994 spkr, 106 utt.)

I Demo: (이명박 / 문재인 / 박근혜 / 손석희) x 2

I None of them were seen during training.
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Speaker Diarization (unsupervised)
1710.10468

I d-vectors obtained with window 24 / hop 12 frames

Gaussian blur Threshold Symmetrize Diffusion 
Y=XXT

Normalize

from ‘Speaker Diarization with LSTM’ by Q. Wang et al.
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Speaker Diarization (supervised)
1810.04719

Jointly learns to:

I assign speaker number / detect speaker change
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from ‘Fully Supervised Speaker Diarization’ by A. Zhang et al.
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Speech Separation: VoiceFilter
1810.04826
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from ‘VoiceFilter: Targeted Voice Separation by Speaker-Conditioned

Spectrogram Masking’ by Q. Wang et al.
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Speech Separation: VoiceFilter
1810.04826

data in speaker recognition and source separation tasks.
The rest of this paper is organized as follows. In Section 2,

we describe our approach to the problem, and provide the de-
tails of how we train the neural networks. In Section 3, we
describe our experimental setup, including the datasets we use
and the evaluation metrics. The experimental results are pre-
sented in Section 4. We draw our conclusions in Section 5, with
discussions on future work directions.

2. Approach

The system architecture is shown in Fig. 1. The system consists
of two separately trained components: the speaker encoder (in
red), and the VoiceFilter system (in blue), which uses the output
of the speaker encoder as an additional input. In this section, we
will describe these two components.

2.1. Speaker encoder

The purpose of the speaker encoder is to produce a speaker em-
bedding from an audio sample of the target speaker. This system
is based on a recent work from Wan et al. [8], which achieves
a high performance on text-dependent and text-independent
speaker verification, as well as on speaker diarization [11, 12]
and multispeaker TTS [13].

The speaker encoder is a 3-layer LSTM network trained
with the generalized end-to-end loss [8]. It takes as inputs log-
mel filterbank energies extracted from windows of 1600 ms,
and outputs speaker embeddings, called d-vectors, which have
a fixed dimension of 256. To compute a d-vector on one utter-
ance, we extract sliding windows with 50% overlap, and aver-
age the L2-normalized d-vectors obtained on each window.

2.2. VoiceFilter system

The VoiceFilter system is based on the recent work of Wilson
et al. [14], developed for speech enhancement. As shown in
Fig. 1, the neural network takes two inputs: a d-vector of the
target speaker, and a magnitude spectrogram computed from
a noisy audio. The network predicts a soft mask, which is
element-wise multiplied with the input (noisy) magnitude spec-
trogram to produce an enhanced magnitude spectrogram. To
obtain the enhanced waveform, we directly add the phase of the
noisy audio to the enhanced magnitude spectrogram, and ap-
ply an inverse STFT on the result.1 The network is trained to
minimize the difference between the masked magnitude spec-
trogram and the target magnitude spectrogram computed from
the clean audio.

The VoiceFilter network is composed of 8 convolutional
layers, 1 LSTM layer, and 2 fully connected layers, each with
ReLU activations except the last layer, which has a sigmoid ac-
tivation. The values of the parameters are provided in Table 1.
The d-vector is repeatedly concatenated to the output of the
last convolutional layer in every time frame. The resulting con-
catenated vector is then fed as the input to the following LSTM
layers. We decide to inject the d-vector between the convo-
lutional layers and the LSTM layer and not before the convo-
lutional layers for two reasons. First, the d-vector is already a
compact and robust representation of the target speaker, thus we
do not need to modify it by applying convolutional layers on top
of it. Secondly, convolutional layers assume time and frequency
homogeneity, and thus cannot be applied on an input composed

1Samples of output audios are available at: https://google.
github.io/speaker-id/publications/VoiceFilter

Table 1: Parameters of the VoiceFilter network.

Layer

Width Dilation

Filters / Nodestime freq time freq
CNN 1 1 7 1 1 64
CNN 2 7 1 1 1 64
CNN 3 5 5 1 1 64
CNN 4 5 5 2 1 64
CNN 5 5 5 4 1 64
CNN 6 5 5 8 1 64
CNN 7 5 5 16 1 64
CNN 8 1 1 1 1 8
LSTM - - - - 400
FC 1 - - - - 600
FC 2 - - - - 600

of two completely different signals: a magnitude spectrogram
and a speaker embedding.

While training the VoiceFilter system, the input audios are
divided into segments of 3 seconds each and are converted, if
necessary, to single channel audios with a sampling rate of 16
kHz.

3. Experimental setup

In this section, we describe our experimental setup: the data
used to train separately the two components of the system, as
well as the metrics to assess the systems.

3.1. Data

3.1.1. Databases

Speaker encoder: Although our speaker encoder network
has exactly the same network topology as the text-independent
model described in [8], we use more training data in this sys-
tem. Our speaker encoder is trained with two datasets com-
bined by the MultiReader technique introduced in [8]. The first
dataset consists of anonymized voice query logs in English from
mobile and farfield devices. It has about 34 million utterances
from about 138 thousand speakers. The second dataset consists
of LibriSpeech [15], VoxCeleb [16], and VoxCeleb2 [17]. This
model has a 3.06% equal error rate (EER) on our internal en-US
phone audio test dataset, compared to the 3.55% EER of the one
reported in [8].

VoiceFilter: We cannot use a “standard” benchmark cor-
pus for speech separation, such as one of the CHiME chal-
lenges [18], because we need a clean reference utterance of
each target speaker in order to compute speaker embeddings.
Instead, we train and evaluate the VoiceFilter system on our own
generated data, derived either from the VCTK database [19] or
from the LibriSpeech database [15]. For VCTK, we randomly
take 99 speakers for training, and 10 speakers for testing. For
LibriSpeech, we used the training and development set defined
in the protocol of the database: the training set contains 2338
speakers, and the development set contains 73 speakers. These
two databases contain read speech, and each utterance contains
the voice of one speaker. We explain in the next section how we
generate the data used to train the VoiceFilter system.

3.1.2. Data generation

From the system diagram in Fig. 1, we see that one training
step involves three inputs: (1) the clean audio from the target
speaker, which is the ground truth; (2) the noisy audio contain-
ing multiple speakers; and (3) a reference audio from the target

from ‘VoiceFilter: Targeted Voice Separation by Speaker-Conditioned

Spectrogram Masking’ by Q. Wang et al.
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Speech Separation: VoiceFilter

I Griffin-Lim Algorithm(1984): phase reconstruction from mag.

I Computationally expensive, quality degradation

I Here, we use a phase from the mixed input.

1 dvec, mixed_mag, mixed_phase = batch[0]

2 mask = model(mixed_mag, dvec)

3 est_mag = mask * mixed_mag

4 est_wav = spec2wav(est_mag, mixed_phase)
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mask / mixed / estimated / target
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Implementation of VoiceFilter

Random thoughts on paper implementation

I github.com/mindslab-ai/voicefilter F 300+

I Reddit > Facebook � Twitter

I Power of template

I Things that were missing from the paper:

I BatchNorm is crucial, but was not mentioned in paper

I What optimizer? What loss function?

I (arXiv paper reverse-engineering)
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and...

Table 2: Speech recognition WER on LibriSpeech. VoiceFilter
is trained on LibriSpeech.

VoiceFilter Model

Clean Noisy

WER (%) WER (%)

No VoiceFilter 10.9 55.9
VoiceFilter: no LSTM 12.2 35.3

VoiceFilter: LSTM 12.2 28.2
VoiceFilter: bi-LSTM 11.1 23.4

Table 3: Speech recognition WER on VCTK. LSTM layer is uni-
directional. Model architecture is shown in Table 1.

VoiceFilter Model

Clean Noisy

WER (%) WER (%)

No VoiceFilter 6.1 60.6
Trained on VCTK 21.1 37.0

Trained on LibriSpeech 5.9 34.3

noisy data is significantly lower than before, while the WER on
the clean dataset remains close to before. There is a significant
gap between the first and second model, meaning that process-
ing the data sequentially with an LSTM is an important compo-
nent of the system. Morever, using a bi-directional LSTM layer
we achieve the best WER on the noisy data. With this model,
applying the VoiceFilter system on the noisy data reduces the
speech recognition WER by a relative 58.1%. In the clean sce-
nario, the performance degradation caused by the VoiceFilter
system is very small: the WER is 11.1% instead of 10.9%.

In Table 3, we present the WER results of VoiceFilter mod-
els evaluated on the VCTK dataset. With a VoiceFilter model
trained also on VCTK, the WER on the noisy data after applying
VoiceFilter is significantly lower than before, reduced relatively
by 38.9%. However, the WER on the clean data after applying
VoiceFilter is significantly higher. This is mostly because the
VCTK training set is too small, containing only 99 speakers.
If we use a VoiceFilter model trained on LibriSpeech instead,
the WER on the noisy dataset further decreases, while the WER
on the clean data reduces to 5.9%, which is even smaller than
before applying VoiceFilter. This means: (1) The VoiceFilter
model is able to generalize from one dataset to another; (2) We
are improving the acoustic quality of the original clean audios,
even if we did not explicitly train it this way.

Note that the LibriSpeech training set contains about 20
times more speakers than VCTK (2338 speakers instead of 99
speakers), which is the major difference between the two mod-
els shown in Table 3. Thus, the results also imply that we could
further improve our VoiceFilter model by training it with even
more speakers.

4.2. Source to distortion ratio

We present the SDR numbers in Table 4. The results follow the
same trend as the WER in Table 2. The bi-directional LSTM
approach in the VoiceFilter achieves the highest SDR.

We also compare the VoiceFilter results to a speech sepa-
ration model that uses the permutation invariant loss [3]. This
model has the same architecture as the VoiceFilter system (with
a bi-directional LSTM), presented in Table 1, but is not fed with
speaker embeddings. Instead, it separates the noisy input into
two components, corresponding to the clean and the interfering
audio, and chooses the output that is the closest to the ground
truth, i.e., with the lowest SDR. This system can be seen as an
“oracle” system as it knows both the number of sources con-
tained in the noisy signal as well as the ground truth clean sig-

Table 4: Source to distortion ratio on LibriSpeech. Unit is dB.
PermInv stands for permutation invariant loss [3]. Mean SDR
for “No VoiceFilter” is high since some clean signals are mixed
with silent parts of interference signals.

VoiceFilter Model Mean SDR Median SDR

No VoiceFilter 10.1 2.5
VoiceFilter: no LSTM 11.9 9.7

VoiceFilter: LSTM 15.6 11.3
VoiceFilter: bi-LSTM 17.9 12.6

PermInv: bi-LSTM 17.2 11.9

nal. As explained in Section 1, using such a system in practice
would require to: 1) estimate how many speakers are in the
noisy input, and 2) choose which output to select, e.g. by run-
ning a speaker verification system on each output (which might
not be efficient if there are a lot of interfering speakers).

We observe that the VoiceFilter system outperforms the per-
mutation invariant loss based system. This shows that not only
our system solves the two aforementioned issues, but using a
speaker embedding also improves the capability of the system
to extract the source of interest (with a higher SDR).

4.3. Discussions

In Table 2, we tried a few variants of the VoiceFilter model on
LibriSpeech, and the best WER performance was achieved with
a bi-directional LSTM. However, it is likely that a similar per-
formance could be achieved by adding more layers or nodes
to uni-directional LSTM. Future work includes exploring more
variants and fine-tuning the hyper-parameters to achieve better
performance with lower computational cost, but that is beyond
the focus of this paper.

5. Conclusions and future work

In this paper, we have demonstrated the effectiveness of us-
ing a discriminatively-trained speaker encoder to condition the
speech separation task. Such a system is more applicable to real
scenarios because it does not require prior knowledge about the
number of speakers and avoids the permutation problem. We
have shown that a VoiceFilter model trained on the LibriSpeech
dataset reduces the speech recognition WER from 55.9% to
23.4% in two-speaker scenarios, while the WER stays approxi-
mately the same on single-speaker scenarios.

This system could be improved by taking a few steps: (1)
training on larger and more challenging datasets such as Vox-
Celeb 1 and 2 [18]; (2) adding more interfering speakers; and
(3) computing the d-vectors over several utterances instead of
only one to obtain more robust speaker embeddings. Another
interesting direction would be to train the VoiceFilter system to
perform joint voice separation and speech enhancement, i.e., to
remove both the interfering speakers and the ambient noise. To
do so, we could add different noises when mixing the clean au-
dio with interfering utterances. This approach will be part of
future investigations. Finally, the VoiceFilter system could also
be trained jointly with the speech recognition system to further
increase the WER improvement.
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from ‘VoiceFilter: Targeted Voice Separation by Speaker-Conditioned

Spectrogram Masking’ by Q. Wang et al.
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Thank You
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Appendix: Griffin-Lim vocoder
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Appendix: Mel-scale filter
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Appendix: SincNet
1808.00158
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0 f [Hz] 4000 0 f [Hz] 4000 0 f [Hz] 4000

0 n 250 0 n 250 0 n 250

0 f [Hz] 4000 0 f [Hz] 4000 0 f [Hz] 4000

from ‘Speaker Recognition from Raw Waveform with SincNet’

by M. Ravanelli, Y. Bengio
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Appendix: SincNet
1811.09725
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‘Interpretable Convolutional Filters with SincNet’, M. Ravanelli, Y. Bengio

박승원 (Deepest, MINDsLab) Speaker Embedding Net. & Applications 25 / 26



Appendix: SincNet
1811.09725
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