Speaker Embedding Network & Applications

박승원 (Deepest, MINDsLab)

Deep Con 2nd 2019년 10월 6일

About me

- Deepest (2019.01)
- ▶ 마인즈랩 학사병특 (2019.02)
- http://swpark.me

Contents

- Introduction
- Speaker Verification: d-vector
- Speaker Diarization: Who spoke when?
- Speech Separation: VoiceFilter

Introduction

How should we feed audio to neural network?

- $\blacktriangleright \text{ Raw audio} \in [-1, 1]^{\mathcal{T}}$
- ► Mel-spectrogram, MFCC

Introduction – STFT & Mel-spectrogram

- Hamming window: $w[n] = 0.54 0.46 \cos(2\pi n/L)$
- window 25 ms, stride(hop) 10 ms

Image by Robert X. Gao, at https://bit.ly/2Ikbiga

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications

Introduction – STFT & Mel-spectrogram

Images generated with github.com/bkvogel/griffin_lim

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications

Introduction – STFT & Mel-spectrogram

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications

Speaker Verification: d-vector

Overview

- ▶ Utterance \xrightarrow{STFT} mel-spec. $\xrightarrow{LSTM+proj.}$ embedding $\in \mathbb{R}^{256}$
- Text independent, Zero-shot

from 'Generalized End-to-End Loss for Speaker Verification' by L. Wan et al.

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications

Speaker Verification: d-vector

Loss function

$$L(\mathbf{e}_{ji}) = -\mathbf{S}_{ji,j} + \log \sum_{k=1}^{N} \exp(\mathbf{S}_{ji,k}).$$
(6)

where

$$\mathbf{c}_{j}^{(-i)} = \frac{1}{M-1} \sum_{\substack{m=1\\m\neq i}}^{M} \mathbf{e}_{jm},$$

$$\mathbf{S}_{ji,k} = \begin{cases} w \cdot \cos(\mathbf{e}_{ji}, \mathbf{c}_{j}^{(-i)}) + b & \text{if } k = j; \\ w \cdot \cos(\mathbf{e}_{ji}, \mathbf{c}_{k}) + b & \text{otherwise.} \end{cases}$$
(8)
$$(9)$$

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications

Speaker Verification: d-vector

- Create random-sized batch: 70 90 frames
- Inference: window 80 / hop 40, average pooling

Training data should be:

- large enough,
- contain speakers with various tones,
- utterances recorded from 'the wild'

to prevent overfitting & discard any other info. than speaker's identity from the embedding.

Speaker Verification

- Training data: VoxCeleb 2 (Multilingual, 5,994 spkr, 10⁶ utt.)
- ▶ Demo: (이명박 / 문재인 / 박근혜 / 손석희) × 2
 - None of them were seen during training.

Speaker Diarization (unsupervised)

1710.10468

d-vectors obtained with window 24 / hop 12 frames

from 'Speaker Diarization with LSTM' by Q. Wang et al.

Speaker Diarization (supervised) 1810.04719

Jointly learns to:

assign speaker number / detect speaker change

from 'Fully Supervised Speaker Diarization' by A. Zhang *et al.* 박승원 (Deepest, MINDsLab) Speaker Embedding Net. & Applications

Speech Separation: VoiceFilter 1810.04826

from 'VoiceFilter: Targeted Voice Separation by Speaker-Conditioned Spectrogram Masking' by Q. Wang *et al.* 박승원 (Deepest, MINDsLab) Speaker Embedding Net. & Applications

Speech Separation: VoiceFilter

1810.04826

Layer	Width		Dilation		Filters / Nodes
	time	freq	time	freq	Filters / Noues
CNN 1	1	7	1	1	64
CNN 2	7	1	1	1	64
CNN 3	5	5	1	1	64
CNN 4	5	5	2	1	64
CNN 5	5	5	4	1	64
CNN 6	5	5	8	1	64
CNN 7	5	5	16	1	64
CNN 8	1	1	1	1	8
LSTM	-	-	-	-	400
FC 1	-	-	-	-	600
FC 2	-	-	-	-	600

Table 1: Parameters of the VoiceFilter network.

from 'VoiceFilter: Targeted Voice Separation by Speaker-Conditioned

Spectrogram Masking' by Q. Wang et al.

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications

Speech Separation: VoiceFilter

Griffin-Lim Algorithm(1984): phase reconstruction from mag.
 Computationally expensive, quality degradation

Here, we use a phase from the mixed input.

```
1 dvec, mixed_mag, mixed_phase = batch[0]
```

- 3 est_mag = mask * mixed_mag
- 4 est_wav = spec2wav(est_mag, mixed_phase)

mask / mixed / estimated / target

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications

Implementation of VoiceFilter

Random thoughts on paper implementation

github.com/mindslab-ai/voicefilter ★ 300+

Reddit > Facebook >> Twitter

- Power of template
- Things that were missing from the paper:
 - BatchNorm is crucial, but was not mentioned in paper
 - What optimizer? What loss function?
 - (arXiv paper reverse-engineering)

6. Acknowledgements

The authors would like to thank Seungwon Park for open sourcing a third-party implementation of this system.² We would like to thank Yiteng (Arden) Huang, Jason Pelecanos, and Fadi Biadsy for the helpful discussions.

²https://github.com/mindslab-ai/voicefilter

from 'VoiceFilter: Targeted Voice Separation by Speaker-Conditioned Spectrogram Masking' by Q. Wang *et al.*

Thank You

Appendix: Griffin-Lim vocoder

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications

Appendix: Mel-scale filter

Appendix: SincNet

1808.00158

from 'Speaker Recognition from Raw Waveform with SincNet'

by M. Ravanelli, Y. Bengio

박승원 (Deepest, MINDsLab) Speaker Embedding Net. & Applications

Appendix: SincNet

1811.09725

'Interpretable Convolutional Filters with SincNet', M. Ravanelli, Y. Bengio

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications

Appendix: SincNet

1811.09725

'Interpretable Convolutional Filters with SincNet', M. Ravanelli, Y. Bengio

박승원 (Deepest, MINDsLab)

Speaker Embedding Net. & Applications