History of Neural Vocoders for TTS (as of 2019.10)

Seungwon Park

Deepest Season 6 Weekly Hosting

November 2, 2019

Introduction: Tacotron

1703.10135

First end-to-end model w/o F0 feature extraction

Introduction: Tacotron2

1712.05884

Modeling mel-scale is better than linear-scale spectrogram!

Introduction: Spectrograms

However... mel-spectrogram is lossy compression of raw audio.

Hence, we need generative models for such inversion.

WaveNet

1609.03499

- Causal dilated conv.
- 256-way output inspired by PixelCNN

WaveNet

Waveform $\mathbf{x} = \{x_1, \dots, x_T\}$ modeled with:

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t | x_1, \dots, x_{t-1})$$

Pros

- Models multi-speaker speech
- Fast training w/ teacher-forcing

Cons

Horribly slow

WaveNet: powerful, but horribly slow

- ► Fast implementation w/ conv. queue (1611.09482)
- CUDA implementation: github.com/NVIDIA/nv-wavenet

1811.00002 (ICASSP '19) / 1811.02155 (ICML '19)

Two flow-based model with almost identical architecture

Note: WN doesn't need to be invertible.

$$\begin{aligned} \mathbf{x}_{a}, \mathbf{x}_{b} &= split(\mathbf{x}) & \mathbf{x}_{a}', \mathbf{x}_{b}' &= split(\mathbf{x}') \\ (\log s, t) &= WN(\mathbf{x}_{a}, \text{mel}) & \mathbf{x}_{a} &= \mathbf{x}_{a}' \\ \mathbf{x}_{a}' &= \mathbf{x}_{a} & (\log s, t) &= WN(\mathbf{x}_{a}, \text{mel}) \\ \mathbf{x}_{b}' &= s \odot \mathbf{x}_{b} + t & \mathbf{x}_{b} &= (\mathbf{x}_{b}' - t) / s \\ \mathbf{x}' &= concat(\mathbf{x}_{a}', \mathbf{x}_{b}') & \mathbf{x} &= concat(\mathbf{x}_{a}, \mathbf{x}_{b}) \end{aligned}$$

Î	x_0	x_4	x_8	x_{12}	x_{16}	x_{20}	x_{24}	x_{28}	x_{32}	x_{36}	x_{40}	
groups	x_1	x_5	x_9	x_{13}	x_{17}	x_{21}	x_{25}	x_{29}	x_{33}	x_{37}	x_{41}	
	x_2	x_6	x_{10}	x_{14}	x_{18}	x_{22}	x_{26}	x_{30}	x_{34}	x_{38}	x_{42}	
	x_3	x_7	x_{11}	x_{15}	x_{19}	x_{23}	x_{27}	x_{31}	x_{35}	x_{39}	x_{43}	

Seungwon Park

$$\log p_{\theta}(\mathbf{x}) = -\frac{\mathbf{z}(\mathbf{x})^{T} \mathbf{z}(\mathbf{x})}{2\sigma^{2}} + \sum_{j=0}^{\#coupling} \log \mathbf{s}_{j}(\mathbf{x}, \text{ mel-spectrogram }) + \sum_{k=0}^{\#conv} \log \det |\mathbf{W}_{k}|$$

since

$$\log p_{\theta}(\boldsymbol{x}) = \log p_{\theta}(\boldsymbol{z}) + \sum_{i=1}^{k} \log \left| \det \left(\boldsymbol{J} \left(\boldsymbol{f}_{i}^{-1}(\boldsymbol{x}) \right) \right) \right|$$

Pros

- Single-stage training w/o distillation
- Fast inference speed

Cons

- Requires huge amount of GPU-days to train
 - 7 days w/ 8 V100 GPUs
- Can't model multi-speaker speech (why?)

Figure 1: The Jacobian $\frac{\partial f^{-1}(x)}{\partial x}$ of (a) an autoregressive transformation, and (b) a bipartite transformation. The blank cells are 0s and represent the independent relations between z_i and x_j . The light-blue cells are scaling variables and represent the linear dependencies between z_i and x_i . The dark-blue cells represent complex non-linear dependencies defined by neural networks.

Figure from "WaveFlow: A Compact Flow-based Model for Raw Audio"

Seungwon Park

MelGAN 1910.06711

► Simple CNN-based GAN w/ carefully designed parameters

... in non-autoregressive manner!

Table 1: Comparison of the number of parameters and the inference speed. Speed of n kHz means that the model can generate $n \times 1000$ raw audio samples per second ³.

Model	Number of parameters (in millions)	Speed on CPU (in kHz)	Speed on GPU (in kHz)
Wavenet (Shen et al., 2018)	24.7	0.0627	0.0787
Clarinet (Ping et al., 2018)	10.0	1.96	221
WaveGlow (Prenger et al., 2019)	87.9	1.58	223
MelGAN (ours)	4.26	51.9	2500

Generator

- ► I/O: Mel-spectrogram / Raw audio
- Upsample w/ ConvTranspose1d (as WaveGlow did)

• $8 \times 8 \times 2 \times 2 = 256 = (STFT stride)$

• dilation = power of kernel size: 3^i

Do not use:

- Latent vector z from $\mathcal{N}(0, I)$
- Spectral norm.

Discriminator

- I/O: Raw audio / Feature maps
- Multi-scale modeling
- Perceptual features for G
- Least-Squares GAN objective

Loss function

Discriminator:

$$\min_{D_k} \mathbb{E}_x \left[(D_k(x) - 1)^2 \right] + \mathbb{E}_{s,z} \left[D_k(G(s,z))^2 \right], \forall k = 1, 2, 3$$
Generator:

$$\min_{G} \left(\mathbb{E}_{s,z} \left[\sum_{k=1,2,3} \left(D_k(G(s,z)) - 1 \right)^2 \right] + \lambda \sum_{k=1}^3 \mathcal{L}_{\mathrm{FM}}(G,D_k) \right)$$

where

$$\mathcal{L}_{ ext{FM}}\left(G, D_{k}
ight) = \mathbb{E}_{x, s \sim p_{ ext{data}}}\left[\sum_{i=1}^{T} rac{1}{N_{i}} \left\|D_{k}^{(i)}(x) - D_{k}^{(i)}(G(s))
ight\|_{1}
ight]$$

History of Neural Vocoders for TTS

Pros

Light-weighted model w/ SotA inference speed

Generalizes to unseen speakers

Cons

- Audible artifacts of some words?
- Painful hyper-parameter tuning
 - β values for Adam: only (0.5, 0.9) works
 - Batch size affects audio fidelity: must use 16
 - Need to consider update order of G/D, batching strategy

Parallel WaveGAN

1910.11480

Overall timeline

- WaveNet: notable generative model for raw audio (2016.09)
- ► Tacotron2: use mel as vocoder input (2017.12)
- WaveGlow: Flow-based parallel, distillation-free model (2018.11.01)
 - FloWaveNet (2018.11.06)
- MelGAN: simple CNN-based GAN (2019.10.08)
 - Parallel WaveGAN (2019.10.25)
- (Today: 2019.11.02)

See also

PixelCNN (1606.05328)

to understand background theory of WaveNet

Parallel WaveNet (1711.10433), ClariNet (1807.07281)

IAF/distillation based fast models

- Behind story of FloWaveNet on Reddit (?)
- WaveFlow (OpenReview Skeh1krtvH)
 - Lighter version of WaveGlow, w/ good intro.
- Implementations on GitHub
 - WaveGlow: github.com/NVIDIA/waveglow
 - MelGAN: github.com/descriptinc/melgan-neurips
 - My own trial: github.com/seungwonpark/melgan

Audio Samples

WaveNet w/o mel:

audio-samples.github.io/#section-6

► WaveNet + Tacotron2:

google.github.io/tacotron/publications/tacotron2

- WaveGlow: nv-adlr.github.io/WaveGlow
- MelGAN: melgan-neurips.github.io/

Demo

Neural TTS of MindsLab Inc. w/ Twip Inc.

https://youtu.be/036dVJUCPRg

[케인] 내 목소리 도네이션 들어봅시다 190814

케인 TV 💿 조회수 15만회 • 2개월 전

[케인TV 구독] http://bit.ly/26FP7G0 [케인TV 방송국] https://www.twitch.tv/kanetv8.

[케인] TTS 녹음 현장~ 큰 그림을 그리는 나 케인 TV ◎ 조회수 15만회・2개월 전 [케인TV 구독] http://bit.ly/26FP7G0 [케인TV 방송국] https://www.twitch.tv/kanetv8.