
History of Neural Vocoders for TTS

(as of 2019.10)

Seungwon Park

Deepest Season 6 Weekly Hosting

November 2, 2019

Introduction: Tacotron
1703.10135

I First end-to-end model w/o F0 feature extraction

Attention

Pre-net

CBHG

Character embeddings

Attention
RNN

Decoder
RNN

Pre-net

Attention
RNN

Decoder
RNN

Pre-net

Attention
RNN

Decoder
RNN

Pre-net

CBHG

Linear-scale
spectrogram

Seq2seq target
with r=3

Griffin-Lim reconstruction

Attention is applied
to all decoder steps

<GO> frame

Seungwon Park History of Neural Vocoders for TTS 2 / 23

Introduction: Tacotron2
1712.05884

I Modeling mel-scale is better than linear-scale spectrogram!

Character
Embedding

Location
Sensitive
Attention

3 Conv
Layers

Bidirectional
LSTMInput Text

2 Layer
Pre-Net

2 LSTM
Layers Linear

Projection

Linear
Projection

Stop Token

5 Conv Layer
Post-Net

Mel Spectrogram

WaveNet
MoL

Waveform
Samples

Seungwon Park History of Neural Vocoders for TTS 3 / 23

Introduction: Spectrograms

I However... mel-spectrogram is lossy compression of raw audio.

I Hence, we need generative models for such inversion.

raw audio
STFT

(linear-scale) spectrogram

magnitude

angle
Inverse STFT

mel filterbank

log
mel-spec.

Neural Vocoders

Seungwon Park History of Neural Vocoders for TTS 4 / 23

WaveNet
1609.03499

I Causal dilated conv.

I 256-way output inspired by PixelCNN

1⇥ 1 ReLUReLU
1⇥ 1

Dilated
Conv

tanh

⇥

+

�

1⇥ 1+ Softmax

Residual

Skip-connections

k Layers

Output

Causal
Conv

Input

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Seungwon Park History of Neural Vocoders for TTS 5 / 23

WaveNet

Waveform x = {x1, . . . , xT} modeled with:

p(x) =
T∏
t=1

p (xt |x1, . . . , xt−1)

I Pros

I Still holds SotA audio fidelity

I Models multi-speaker speech

I Fast training w/ teacher-forcing

I Cons

I Horribly slow

Seungwon Park History of Neural Vocoders for TTS 6 / 23

WaveNet: powerful, but horribly slow

I Fast implementation w/ conv. queue (1611.09482)

I CUDA implementation: github.com/NVIDIA/nv-wavenet

Seungwon Park History of Neural Vocoders for TTS 7 / 23

github.com/NVIDIA/nv-wavenet

WaveGlow / FloWaveNet
1811.00002 (ICASSP ’19) / 1811.02155 (ICML ’19)

I Two flow-based model with almost identical architecture

x

squeeze to
vectors

invertible 1x1
convolution

affine
coupling layer

×12

𝑧

𝑥' 𝑥(

upsampled
mel-spectrogram

𝑊𝑁

affine
xform

𝑥' 𝑥(9

,

Flow

Squeeze

x N
 blocks

Context
block

,

Flow

ActNorm

Change Order

Affine Coupling

,

x M flows

Non-causal
WaveNet

(,) −

÷(,)
(

,

,

,

)exp

Seungwon Park History of Neural Vocoders for TTS 8 / 23

WaveGlow / FloWaveNet

Note: WN doesn’t need to be invertible.

xa, xb = split(x)

(log s, t) = WN(xa,mel)

x ′a = xa

x ′b = s � xb + t

x ′ = concat(x ′a, x
′
b)

x ′a, x
′
b = split(x ′)

xa = x ′a

(log s, t) = WN(xa,mel)

xb =
(
x ′b − t

)
/s

x = concat(xa, xb)

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

x32

x33

x34

x35

x36

x37

x38

x39

x40

x41

x42

x43

· · ·

· · ·

· · ·

· · ·

gr
ou

p
s

Seungwon Park History of Neural Vocoders for TTS 9 / 23

WaveGlow / FloWaveNet

log pθ(x) =− z(x)Tz(x)

2σ2

+

#coupling∑
j=0

log s j(x , mel-spectrogram)

+

#conv∑
k=0

log det |W k |

since

log pθ(x) = log pθ(z) +
k∑

i=1

log
∣∣det

(
J
(
f −1i (x)

))∣∣
Seungwon Park History of Neural Vocoders for TTS 10 / 23

WaveGlow / FloWaveNet

I Pros

I Single-stage training w/o distillation

I Fast inference speed

I Cons

I Requires huge amount of GPU-days to train

I 7 days w/ 8 V100 GPUs

I Can’t model multi-speaker speech (why?)

Seungwon Park History of Neural Vocoders for TTS 11 / 23

WaveGlow / FloWaveNet
Under review as a conference paper at ICLR 2020

!"($%")

!'($%')

!(($%()

!)($%))

!*($%*)

!+($%+)

!,($%,)

!-($%-)

."

.'

.(

.)

.*

.+

.,

.-
$'$" $($) $* $+ $, $-

1

1

1

1

!"($%:')

!)($%:')

!*($%:')

!+($%:')

,%
,-
,.
,'
,"
,)
,*
,+

$-$% $. $' $" $) $* $+
(a) (b)

Figure 1: The Jacobian @f

�1(x)
@x

of (a) an autoregressive transformation, and (b) a bipartite trans-
formation. The blank cells are 0s and represent the independent relations between z

i

and x
j

. The
light-blue cells are scaling variables and represent the linear dependencies between z

i

and x
i

. The
dark-blue cells represent complex non-linear dependencies defined by neural networks.

and can also be done in parallel. As a result, the bipartite transformation provides both parallel
density evaluation and parallel synthesis. In previous work, WaveGlow (Prenger et al., 2019) and
FloWaveNet (Kim et al., 2019) both squeeze the adjacent audio samples on the channel dimension,
and apply the bipartite transformation on the partitioned channel dimension.

3.3 CONNECTIONS

It is worthwhile to mention that the autoregressive transformation is more expressive than bipartite
transformation in general. As illustrated in Figure 1(a) and (b), the autoregressive transformation
introduces n⇥(n�1)

2 complex non-linear dependencies (dark-blue cells) and n linear dependencies
between data x and latents z. In contrast, bipartite transformation introduces only n

2

4 non-linear
dependencies and n

2 linear dependencies. Indeed, one can reduce an autoregressive transformation
z = f�1

(x;#) to a bipartite transformation z = f�1
(x;✓) by: (i) picking an autoregressive order o

such that all of the indices in set a rank early than the indices in b, and (ii) setting the shifting and
scaling variables as,

µ
t

(x
<t

;#) =

⇢
0 for t 2 a

µ
t

(x
a

;✓) for t 2 b
, �

t

(x
<t

;#) =

⇢
1 for t 2 a

�
t

(x
a

;✓) for t 2 b
.

Given the less expressive building block, the bipartite transformation-based flows generally re-
quire many more layers and larger hidden size to match the capacity of a compact autoregressive
models (e.g., as measured by test likelihood) (Kingma and Dhariwal, 2018; Prenger et al., 2019).

4 WAVEFLOW

In this section, we present WaveFlow and its implementation with dilated 2-D convolutions.

4.1 DEFINITION

We denote the high dimensional 1-D waveform as x = {x1, · · · , xn

}. We first squeeze x into a
h-row 2-D matrix X 2 Rh⇥w by column-major order, where w =

n

h

and adjacent samples are in the
same column. We assume Z 2 Rh⇥w are sampled from an isotropic Gaussian, and define the inverse
transformation Z = f�1

(X;⇥) as,

Z
i,j

= �
i,j

(X
<i,•;⇥) ·X

i,j

+ µ
i,j

(X
<i,•;⇥), (6)

where X
<i,• represents all elements above i-th row (see Figure 2 for an illustration). Note that,

i) the receptive fields over the squeezed inputs X for computing Z
i,j

in WaveFlow is strictly larger
than that of WaveGlow when h > 2. ii) WaveNet is equivalent to an autoregressive flow with

4

Figure from “WaveFlow: A Compact Flow-based Model for Raw Audio”

Seungwon Park History of Neural Vocoders for TTS 12 / 23

MelGAN
1910.06711

I Simple CNN-based GAN w/ carefully designed parameters

I ... in non-autoregressive manner!

Seq2Seq
Model

Text Sequence MelGAN
Generator

Mel-spectrogram Raw Waveform

Figure 2: Text-to-speech pipeline.

is also well-suited for hardware specific inference optimization (such as half precision on Tesla V100
(Jia et al., 2018; Dosovitskiy & Brox, 2016) and quantization (as done in Arik et al. (2017)) which
will further boost inference speed. Table 1 shows the detailed comparison.

Table 1: Comparison of the number of parameters and the inference speed. Speed of n kHz means
that the model can generate n ⇥ 1000 raw audio samples per second 3.

Model Number of parameters
(in millions)

Speed on CPU
(in kHz)

Speed on GPU
(in kHz)

Wavenet (Shen et al., 2018) 24.7 0.0627 0.0787
Clarinet (Ping et al., 2018) 10.0 1.96 221
WaveGlow (Prenger et al., 2019) 87.9 1.58 223
MelGAN (ours) 4.26 51.9 2500

3 Results

3.1 Ablation Study

In order to understand the importance of various components of our proposed model, we perform
qualitative and quantitative analysis of the reconstructed audio for the mel-spectrogram inversion
task. We remove certain key components and evaluate the audio quality using the test set. Table 2
shows the mean opinion score of audio quality as assessed via human listening tests.

We present samples to the reader in the supplementary material for qualitative evaluation. Each
model is trained for 500 epochs on LJ Speech dataset (Ito, 2017). Our qualitative analysis leads to the
following conclusions: Absence of dilated convolutional stacks in the generator or removing weight
normalization lead to high frequency artifacts. Using a single discriminator (instead of multi-scale
discriminator) produces metallic audio, especially while the speaker is breathing. Moreover, on our
internal 6 clean speakers dataset, we notice that this version of the model skips certain voiced portions,
completely missing some words. Using spectral normalization or removing the window-based
discriminator loss makes it harder to learn sharp high frequency patterns, causing samples to sound
significantly noisy. Adding an extra L1 penalty between real and generated raw waveform makes
samples sound metallic with additional high frequency artifacts.

3.2 End-to-end speech synthesis

We perform quantitative and qualitative comparisons between our proposed MelGAN vs competing
models on the task of mel-spectrogram inversion. We plug the MelGAN model in an end-to-end
speech synthesis pipeline and evaluate the text-to-speech sample quality with competing models.
Specifically, we compare the sample quality when using MelGAN for spectrogram inversion vs Wave-
Glow using the state-of-the-art Tacotron2 model (Shen et al., 2018) for the text-to-melspectrogram
generation model. Additionally, we experiment with the open-source char2wav model (Sotelo et al.,
2017) as an additional method for text-to-spectrogram generation, since this model is simpler and
trains faster. We adapt this model to produce mel-spectrogram instead of vocoder. We replace the
neural vocoder used in char2wav by our MelGAN model. For all experiments, MelGAN was trained
with batch size 16 on a single NVIDIA RTX2080 GPU. We use Adam as the optimizer with learning

3We use NVIDIA GTX 1080Ti for the GPU benchmark and Intel(R) Core(TM) i9-7920X CPU @ 2.90GHz
processor for the CPU benchmark, tested on only 1 CPU core. We set OMP_NUM_THREADS=1 and
MKL_NUM_THREADS=1

6

Seungwon Park History of Neural Vocoders for TTS 13 / 23

MelGAN

Mel Spectogram

Conv Layer

Upsampling [8x]
Layer

Residual stack

Upsampling [2x]
Layer

Residual stack

Conv Layer

Raw Waveform

Input sequence

Output sequence

Dilated
conv block3x

2x

2x
Raw Waveform

(downsampled) Conv Layer

Downsampling [4x]
Layer

Conv Layer

Conv Layer

4x

Output

Feature map

4x Feature maps

Feature map

Discriminator
BlockAvg Pool Feature maps

+ output

Discriminator
BlockAvg Pool Feature maps

+ output

Discriminator
Block

Feature maps
+ outputRaw Waveform

Seungwon Park History of Neural Vocoders for TTS 14 / 23

MelGAN
Generator

lReLU 3 x 1, dilation=1 conv

lReLU 3 x 1, dilation=1 conv

lReLU 3 x 1, dilation=3 conv

lReLU 3 x 1, dilation=1 conv

lReLU 3 x 1, dilation=9 conv

lReLU 3 x 1, dilation=1 conv

Input sequence

Output sequence

I I/O: Mel-spectrogram / Raw audio

I Upsample w/ ConvTranspose1d

(as WaveGlow did)

I 8× 8× 2× 2 = 256 = (STFT stride)

I dilation = power of kernel size: 3i

I Do not use:

I Latent vector z from N (0, I)

I Spectral norm.

Seungwon Park History of Neural Vocoders for TTS 15 / 23

MelGAN
Discriminator

Raw Waveform
(downsampled) Conv Layer

Downsampling [4x]
Layer

Conv Layer

Conv Layer

4x

Output

Feature map

4x Feature maps

Feature map

Discriminator
BlockAvg Pool Feature maps

+ output

Discriminator
BlockAvg Pool Feature maps

+ output

Discriminator
Block

Feature maps
+ outputRaw Waveform

I I/O: Raw audio / Feature maps

I Multi-scale modeling

I Perceptual features for G

I Least-Squares GAN objective

Seungwon Park History of Neural Vocoders for TTS 16 / 23

MelGAN
Loss function

I Discriminator:

min
Dk

Ex

[
(Dk(x)− 1)2

]
+ Es,z

[
Dk(G (s, z))2

]
, ∀k = 1, 2, 3

I Generator:

min
G

Es,z

 ∑
k=1,2,3

(Dk(G (s, z))− 1)2

+ λ

3∑
k=1

LFM (G ,Dk)


where

LFM (G ,Dk) = Ex ,s∼pdata

[
T∑
i=1

1

Ni

∥∥∥D(i)
k (x)− D

(i)
k (G (s))

∥∥∥
1

]

Seungwon Park History of Neural Vocoders for TTS 17 / 23

MelGAN

I Pros

I Light-weighted model w/ SotA inference speed

I Generalizes to unseen speakers

I Cons

I Audible artifacts of some words?

I Painful hyper-parameter tuning

I β values for Adam: only (0.5, 0.9) works

I Batch size affects audio fidelity: must use 16

I Need to consider update order of G/D, batching strategy

Seungwon Park History of Neural Vocoders for TTS 18 / 23

Parallel WaveGAN
1910.11480

Generator
(WaveNet)

Random noise

𝑧

Discriminator
𝑥Natural speech

STFT loss
(1st)

STFT loss
(2nd)

STFT loss
(Mth)

Adversarial
loss

#

𝐿%&'

𝐿%()

𝜆%()

#

𝑳𝐆

Discriminator
loss

𝑳𝐃 Gradients
w.r.t. D

Gradients
w.r.t. G

Parameter
update

Parameter
update

…

Real/Fake

Auxiliary feature

𝑐

𝑥/

0
1

𝑥

𝐿2(4)

𝐿2(0)

𝐿2(1)

𝑥/

Seungwon Park History of Neural Vocoders for TTS 19 / 23

Overall timeline

I WaveNet: notable generative model for raw audio (2016.09)

I Tacotron2: use mel as vocoder input (2017.12)

I WaveGlow: Flow-based parallel, distillation-free model

(2018.11.01)

I FloWaveNet (2018.11.06)

I MelGAN: simple CNN-based GAN (2019.10.08)

I Parallel WaveGAN (2019.10.25)

I (Today: 2019.11.02)

Seungwon Park History of Neural Vocoders for TTS 20 / 23

See also

I PixelCNN (1606.05328)

I to understand background theory of WaveNet

I Parallel WaveNet (1711.10433), ClariNet (1807.07281)

I IAF/distillation based fast models

I Behind story of FloWaveNet on Reddit (?)

I WaveFlow (OpenReview Skeh1krtvH)

I Lighter version of WaveGlow, w/ good intro.

I Implementations on GitHub

I WaveGlow: github.com/NVIDIA/waveglow

I MelGAN: github.com/descriptinc/melgan-neurips

I My own trial: github.com/seungwonpark/melgan

Seungwon Park History of Neural Vocoders for TTS 21 / 23

github.com/NVIDIA/waveglow
github.com/descriptinc/melgan-neurips
github.com/seungwonpark/melgan

Audio Samples

I WaveNet w/o mel:

audio-samples.github.io/#section-6

I WaveNet + Tacotron2:

google.github.io/tacotron/publications/tacotron2

I WaveGlow: nv-adlr.github.io/WaveGlow

I MelGAN: melgan-neurips.github.io/

Seungwon Park History of Neural Vocoders for TTS 22 / 23

audio-samples.github.io/#section-6
google.github.io/tacotron/publications/tacotron2
nv-adlr.github.io/WaveGlow
melgan-neurips.github.io/

Demo

Neural TTS of MindsLab Inc. w/ Twip Inc.

I https://youtu.be/O36dVJUCPRg

Seungwon Park History of Neural Vocoders for TTS 23 / 23

https://youtu.be/O36dVJUCPRg

